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O R I G I N A L  A R T I C L E

Measurement Error Detection for Stereo Visual 
Odometry Integrity

Yuanwen Fu  Shizhuang Wang  Yawei Zhai  Xingqun Zhan  Xin Zhang

1  INTRODUCTION

Future autonomous systems are expected to bring significant convenience to 
people. To ensure operational safety, navigation systems must continuously pro-
vide positioning solutions with high integrity while also meeting accuracy require-
ments. In addition, because those systems are applied over various scenarios, 
the navigation systems also must provide high robustness against environmental 
changes. Here, the term scenario refers to the environment around the camera 
(such as various light conditions, weather, and moving objects), and it does not 
include the subject (such as a vehicle) mounting the camera. Therefore, providing 
high integrity and robustness for future autonomous systems across various sce-
narios is one of our key research challenges. Integrity is a quantifiable performance 
metric used to set certifiable requirements on an individual subsystem to ensure 
a level of safety for the overall system (Kelly & Davis, 1994). It is a key metric 
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is greatly under-explored in visual navigation. A new two-factor approach to 
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that measures navigation safety for safety-critical applications (Blanch et al., 2007; 
Brown, 1992; Zhai et al., 2018, 2020). This concept was originally introduced in avi-
ation to measure the trust of the navigation information. It also includes the ability 
of the system to provide timely alerts to users when results from the navigation 
subsystem cannot be trusted.

The particular interest of this paper is stereo visual odometry (VO), which has 
been identified as one of the main navigation sensors to support safety-critical 
autonomous systems. It aims to estimate the ego-motion of a camera by iden-
tifying the projected movement of landmarks in consecutive frames. Typical 
VO pipelines include feature-based approaches, direct approaches, and hybrids 
of feature-based and direct approaches (Jiang et al., 2013; Naroditsky et al., 2012; 
Scaramuzza & Siegwart, 2008). We focus on the Oriented FAST and Rotated 
BRIEF (ORB; Rublee et al., 2011) feature-based approach due to its prevalence. 
ORB is an efficient feature-extraction approach based on features from acceler-
ated segment testing (FAST; Rosten & Drummond, 2006) corner point detection 
and the binary robust independent elementary features (BRIEF; Calonder et al., 
2010) descriptor. The workflow of this feature-based approach is presented in 
Figure 1 (Cumani, 2011; Mur-Artal & Tardos, 2017) with six primary steps.

The first step is preprocessing. More specifically, it is to calibrate the camera’s dis-
tortion parameters and internal parameters. The second step is feature extraction. 
The term feature here means a distinctive pixel. There are many feature-extraction 
methods, including Harris and Stephens’ work (1988), ORB, Bay et  al.'s (2006) 
speeded up robust features (SURF), and distinctive image features from Lowe's 
(2004) scale-invariant keypoints (SIFT). The third step is associating features 
extracted from consecutive frames, for which there is a mismatch limit check. 
The fourth step is recovering the depth information of features, which has been 
lost in the mapping from landmarks to features. Such methods include the sum 
of absolute difference (SAD; Szeliski, 2010), semi-global block matching (SGBM; 
Hirschmüller, 2008) and graph cut (GC; Li & Chen, 2004). The fifth step is out-
lier rejection, and its main method is by random sample consensus (RANSAC; 
Fischler & Bolles, 1981). The sixth step is to estimate the pose of camera, for which 
we utilize the methods of bundle adjustment and singular value decomposition 
(SVD). Among these steps, there are multiple tests to reject landmark pairs with 
large matching residuals, which are denoted as checks here.

Although there are many existing works on improving VO accuracy and robust-
ness (Nistér et al., 2004; Scaramuzza & Fraundorfer, 2011), there are very few stud-
ies on VO integrity. Among the small amount of relevant research (Li & Waslander, 
2019; Wang et  al., 2020a; Zhu et  al., 2020), all use the Gaussian distribution to 
describe visual measurement errors without giving reasonable proof. It is worth 
noting that Zhu et  al. (2019) strictly derived the geometric error model from a 

FIGURE 1 A block diagram of our feature-based approach
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chessboard-like visual feature. The researchers define 2D features to act as visual 
measurement. The feature point is the projection of the landmark on the image 
plane, which loses depth information. Thus, the researchers fail to faithfully char-
acterize landmark matching errors (later defined in Equation [2]), let alone across 
diverse scenarios. In contrast, we define a 3D landmark matching pair as the visual 
measurement and the difference between pair members as residual, for the simple 
reason that the rotation matrix and translation vector are computed by landmark 
matching pairs in stereo VO. Overbounding such visual measurement errors will 
be the first step in developing fault detection and exclusion (FDE) algorithms, just 
as those found in advanced receiver autonomous integrity monitoring (ARAIM) 
for civil aviation (Walter et  al., 2019) are currently the starting point for future 
visual navigation integrity frameworks.

The main contributions are as follows. Firstly, the definition of the stereo VO mea-
surement residual, in the form of landmark matching error, is proposed. Secondly, 
we propose two real-time detection methods against large errors that otherwise 
cannot be identified by the current VO’s outlier rejection methods. In particular, 
we propose two methods to check feature distinctiveness and motion constraints. 
Thirdly, we evaluate our method in scenarios of various natures and show that, by 
using the proposed methods, the overbound becomes much more effective (tighter 
and requiring less computation) and scenario tolerant, which could be a good ref-
erence for developing future integrity monitoring algorithms for stereo VO.

In the rest of this paper, we first formulate the problem by discussing the conven-
tional outlier rejection methods and current overbounding challenges in Section 2. 
We describe our proposed detection methods for large errors in Section 3. Extensive 
experiments are conducted in Section 4, and we conclude the paper in Section 5.

2  PROBLEM FORMULATION

In this section, our choice of measurement model is, first, justified. Conventional 
approaches to outlier rejection are then investigated. This includes three checks 
(i.e., landmark mismatch thresholding, depth thresholding, and random sample 
consensus [RANSAC]). Then, we show that some large measurement errors can-
not be removed by using these conventional checks using real examples. The dis-
covery of the correspondence between these errors and their sources sets the stage 
for the two proposed checks in Section 3.

2.1  Measurement Model

Several potential measurement models are readily available that allow us to lever-
age prior work in ARAIM when developing integrity concepts and methods. For 
the specific problem of VO, two kinds of relative measurement models exist: repro-
jection error and landmark matching error. These are, respectively, defined as:

	 p T Pk k k k� �� �� �� , 1 1 � (1)

and:

	 P T Pk k k k� �� �, 1 1 � (2)
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Here, a 3D point Pk-1  in world frame at epoch k -1  is projected onto the imaging 
plane and output as expected pixel coordinates � T Pk k k, � ��� �1 1  at epoch k. This is 
subtracted from measurement pk of the same 3D point at epoch k to obtain the 
reprojection error. Tk k, -1  is the relative pose between these two epochs. Landmark 
matching error is defined as the difference between the same 3D point at epoch k 
and its expected value T Pk k k, .� ��1 1

Our choice of landmark matching error is justified by the fact that it is closer to 
the navigation end solution than the reprojection error in the stereo VO pipeline. 
Instead of using a reprojection error method which may include erroneous cam-
era matrix or distortion models, we reformulated landmark matching error into 
the measurement residual used throughout this work. In contrast to the measure-
ment models found in other state-of-the-art treatments on VO integrity, our choice 
inherently connects the navigation solution and integrity monitoring by recogniz-
ing that, unlike 2D features, 3D landmarks preserve scale information, which is the 
major advantage of stereo VO over monocular VO.

2.2  Conventional Approaches to Outlier Rejection in VO

In this section, we will look into the conventional checks in state-of-the-art 
VO  pipelines in detail. As shown in Figure  1, there are three checks in the 
VO workflow.

2.2.1  Mismatch Thresholding

In the ORB feature method, the strategy of brute force matching is adopted in 
the feature matching step. Specifically, there is feature set  �� �p p pn1 2, , ,  and 
feature set  �� �q q qm1 2, , , ,  which represent the features extracted from the 
current frame and the previous frame, respectively. We take a random feature pi 
from the feature set   and find a feature qj  in the feature set ,  which has the 
smallest Hamming distance (Szeliski, 2010) from pi compared to the rest of the 
features in the feature set .

The Hamming distance between feature pi and feature qj is constrained in 
Check 1 as:

	 ( )X Y Z distance p q Thresholdi j, , ,� � �� �1 � (3)

where:

	 Threshold max mindist1 30 2� � �,� * � (4)

When the Hamming distance is larger than the Threshold 1 computed by 
Equation (4), the match p qi j,� �  is rejected. In Equation (4), mindist refers to 
the minimum value among all the distances of matched feature point pairs. The 
essence of Check 1 is to exclude mismatch events through the distinctiveness of 
feature. Moreover, please note that Threshold 1 is not a fixed value; rather, it is 
adaptive to input frames. As shown in Equation (4), Threshold 1 is equal to the 
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maximum value of 30 and two times the mindist (Gao & Zhang, 2021). The min-
imum value of Threshold 1 (i.e., 30 pixels), corresponds to a medium resolution 
(e.g., 720×480 pixels) image, decent camera motions, and mediocre lighting con-
ditions. Tougher scenarios should expect a larger mindist, and therefore a larger 
Threshold 1.

2.2.2  Depth Thresholding

The landmark coordinates, (X, Y, Z), in the camera frame can be calculated by 
Equation (5) and Equation (6). The feature (u, v) is the projection of the land-
mark (X, Y, Z). In Equation (5), ul and ur represent the abscissas of feature in the 
left and right camera pixel planes, respectively, and d represents the disparity. In 
Equation (6), fx and fy are the focal lengths; cx and cy are the coordinates of the opti-
cal center’s projection onto the image; and b is the baseline between the left and 
right cameras. The parameters including fx, fy, cx, cy, and b are only related to the 
camera, itself, and thus termed intrinsic parameters.

	 d u ul r� � � (5)

	
Z f

X u c f Z
Y v c f Z

b dx

x x

y y

�

� �� � �

� �� � �

�

�
��

�
�
�

� (6)

In order to show the camera projection and disparity in an intuitive way, we 
designed Figure  2(a) and 2(b), respectively. Figure  2(a) shows the projection 
model with one camera and Figure 2(b) shows the disparity between two camera 
views.

The key to computing the landmark is to find the correspondence between the 
left and right pixels. This is a challenging task because there are many potential 
distractions including: optical distortion and noises (brightness, hue, and satura-
tion misalignment), specular reflection on a smooth surface, projection reduction, 

FIGURE 2 The pinhole camera model and parameters: (a) is the projection model for a 
single camera and the intrinsic parameters and (b) is a stereo camera with baseline and disparity.



FU et al.    

perspective distortion, low or repeated textures, and transparent objects, as well 
as overlapping and discontinuity. The most common cases are object boundary 
and fine structure, in which it is difficult to find correspondence between the left 
and right pixels. Other practical problems arise from the difference or reflection in 
recording and lighting.

The SGBM algorithm strikes a good balance between efficiency and accuracy 
and is, therefore, examined in this paper. The Open-Source Computer Vision 
Library (OpenCV; Bradski, 2000) implemented the SGBM algorithm and encapsu-
lated it into the cv::StereoSGBM class. However, we find that it has two shortcom-
ings. Firstly, the calculated disparities often exceed the range that has been preset 
in the OpenCV function. Secondly, the same disparity disturbance at different 
depths leads to different depth errors. More specifically, larger depth is susceptible 
to larger error under the same disparity perturbation. Therefore, the disparity and 
depth are constrained by Check 2:

	 ( , , ) , , �X Y Z d d d Z Thresholdmin max��� �� �� �2 � (7)

where (X, Y, Z) is the landmark, Z refers to the depth between the landmark and 
the camera, d is the disparity that is depicted in Figure 2, and dmin and dmax are the 
lower and upper bounds of the disparity, respectively. Furthermore, dmin represents 
the starting point of the epipolar line search in the right image and dmax represents 
the maximum search boundary. These two parameters have little to do with the 
scenario, but are related to the size of the image. In this paper, dmin is set to 0 and 
dmax is set to 64. They remain the same for all 10 scenarios that are used to model 
visual measurement errors.

The landmark is abandoned when its computed disparity is not in the predefined 
range (that is, d d dmin max∉[ , ] ). The landmark is also abandoned when its depth is 
larger than Threshold 2 (that is, Z > Threshold 2). Threshold 2 is a parameter that 
should be given before the VO execution. Normally, it should be somewhere between 
100 and 200 meters. Check 2 is a strong check when Threshold 2 is set close to 100, and 
it is a weak check when Threshold 2 is set close to 200. When objects in the scenario 
(such as Old Town) are far from the camera, we recommend using a weak check. With 
closer objects (such as the Hospital), using a strong check could be better. In general, 
Check 2 discards large depth error events with a low performance.

2.2.3  RANSAC

The conventional Check 1 and Check 2 only help to exclude large mismatch 
events and large depth error events, but there are no sanity checks on moving 
object events. Therefore, a RANSAC step is inserted into VO, denoted as Check 3. 
A brief description of the RANSAC algorithm appears in Section 1 where it was 
first introduced (Fischler & Bolles, 1981). The basic idea of RANSAC is to use 
random sets of data points to fit models and use the rest of the data points to 
verify these models. Data points in the model with the highest consensus are 
selected to form the inlier set; the remaining data points are defined as outliers. 
In the context of stereo VO, the data point in question is the matched landmark 
pairs and the model is the transformation matrix T, which describes rotation R 
and translation t in three dimensions. The RANSAC algorithm is implemented in 
the following three steps.

First, we calculate the transformation matrix. The transformation matrix is 
computed with four landmark pairs following a direct linear transformation, 
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ignoring the internal constraints of the rotation matrix, which is formulated in 
Equation (8) as:
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where points P X Y Z ii i i i, , ,� , � , �� � � 1 2 3 4  are the landmarks observed in the previous 

frame; points Q X Y Z ii i i i
' ' ', , ,� ,� ,�� � � 1 2 3 4  are the landmarks in the current frame; 

r r1 9~  are the elements of the rotation matrix, R; and t t1 3~  are the elements of the 
translation vector t. Then, we project R solved by Equation (8) into the Euclidean 
orthogonal space using Equation (9):

	 � � � ��R RR RT
1
2 � (9)

Substitute the value of ′R  into the Equation (8), and we arrive at Equation (10):
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The updated translation vector can be obtained by solving Equation (10) with 
any least-squares method.

Next, we use this model and a threshold (named Threshold 3) to determine 
whether a landmark matching pair is an inlier or outlier. To be more specific, 
we first calculate the landmark matching error, err, according to Equation (11). 
The resultant err value is then compared against Threshold 3. If the err value 
is smaller than the threshold, the landmark matching pair is claimed an inlier; 
otherwise, it is an outlier.
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	 err q R p ti i� � �� �� � � (11)

The above two steps are repeated until an optimal inlier set is found, which refers 
to the inlier set with the largest number of inliers.

There are two important parameters in the RANSAC step, which are the number 
of iterations and Threshold 3. The more iterations we have, the more likely we 
are to identify inliers from outliers correctly. A general rule is that noisy scenarios 
(bad weather, low light conditions, etc.) necessitate more iterations. However, due 
to limited computing power, RANSAC iterations cannot be set infinitely large. In 
this paper, we set RANSAC iterations to be 500 for the 10 scenarios, since this value 
strikes a balance between accuracy and efficiency according to our previous work 
(Fu et al., 2020). Threshold 3 is used to determine whether a landmark matching 
pair is an inlier or outlier. Therefore, it is related to the statistical properties of 
inliers, and has nothing to do with the scenario. Different scenarios may have dif-
ferent outliers, but their inliers are similar in terms of a specific set of landmarks. 
Our previous work (Fu et  al., 2020) shows that setting Threshold 3 to 1  meter 
admits great performance according to sensitivity analyses on integrity.

2.3  Overbounding Measurement Error

Overbounding is a statistical concept that was developed in the early 2000s to 
deal with navigation algorithms that required modeling unknown error distribu-
tions. This technique arose because the common usage of Gaussian-distributed 
random variables was insufficient to adequately describe many error distributions 
that were vital to the utilization of new navigation technologies. Conceptually, 
overbounding provides a replacement statistical model of a random variable whose 
true probability distribution function is unknown. The probability of an error as 
computed by the overbound is always greater than or equal to the true probabil-
ity. Let X be a random variable with cumulative distribution function (CDF), F(x). 
Then, B(x) is the overbound of X with Equation (12):

	
B x F x F x
B x F x F x
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0 5 � (12)

We present the basic methodologies on developing error models of visual mea-
surements using an open-source data set in this section. We explore the TartanAir 
data set (Wang et al., 2020b) because, compared to other data sets, it covers much 
more diverse scenarios (18 in total), each of which include two distinctive difficulty 
levels/modes (easy and hard). There are 48 sequences in total. The images are col-
lected in urban, rural, natural, and indoor environments, so they represent various 
scenarios covering challenging viewpoints and diverse motion patterns subject to 
changes of light, weather, moving objects, etc.

The accuracy of VO depends directly on the landmark matching pairs. Therefore, 
the landmark matching errors are characterized in the following experiments. The 
landmark matching error is defined in Equation (13), which is the matrix form of 
Equation (2):
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where X Y Z T
2 2 2,� ,�� ��  and X Y Z T

1 1 1, ,�� ��  are the corresponding landmarks in the 
current frame and previous frame, respectively. R21 � and t21  are the ground truth 
values of the rotation matrix and translation vector from the previous frame to 
the current frame, respectively. Finally, � � ��� ��X Y Z T, ,  is the landmark matching 
error.

To characterize the landmark errors, we designed the following experiment with 
the TartanAir data set. The data is divided into two levels (easy and hard) in terms 
of motion patterns. We chose the hard mode because the images captured in this 
mode represent corner cases that may push current algorithms to their limits. 
These cases include, but are not limited to, moving objects—intensive and vio-
lent actions mixed with significant rolling and yaw motions. For each image, we 
acquire landmark matching pairs and conduct the three aforementioned conven-
tional checks in an attempt to reject the faulty landmark matching pairs, followed 
by overbounding.

We employed two example scenarios to show the inability of conventional 
checks in terms of overbounding. Test shots of the two scenarios are shown in 
Figure 3, where the left and right pictures refer to data sequences Carwelding and 
Neighborhood, respectively. For the Carwelding case, there are lots of moving objects 
(i.e., robot arms and frame structures for cars on the production line). Moreover, 
because of the strong light caused by the electric arc during welding, there are large 
illumination changes in the consecutive frames. These events significantly impact 
the landmark error. For the Neighborhood case, because of repetitive textures such 
as roof, road, and leaves, the VO front-end was expected to receive many mismatch-
ing events, which could also lead to dramatically large landmark matching errors. 
These two data sequences cover all the negative factors that would be encountered 
in the real world and, therefore, we use their landmark matching results to find the 
shortcomings of conventional checks.

Figure 4 presents the error analysis results for two example scenarios. The three 
figures in the left column correspond to the errors in x, y, and z directions for the 
Carwelding Scenario, whereas the right three are for the Neighborhood Scenario. 
The error profiles are presented in terms of folded CDF plots. This is a very mature 
method in GPS error overbounding, and readers are referred to previous works 
along this line (Decleene, 2000; Larson, 2018; Rife et al., 2004, 2006; Wang et al., 
2021) for a more detailed explanation of this principle. In each figure, the blue dotted 
curve corresponds to the folded CDF of the true data. The green curve represents 
a normal distribution with a mean and standard deviation of the  distribution.  

FIGURE 3 Two example scenarios for preliminary analysis: Carwelding (left) and 
Neighborhood (right)
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FIGURE 4 Folded cumulative density function (CDF) results of the landmark matching 
errors in x, y, and z directions (top to bottom) for the two example scenarios: Carwelding (left) 
and Neighborhood (right)
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The  red  envelope is the minimal overbounding folded CDF, which is further 
addressed in the following section. The results are summarized in Table 1.

It can be seen from Figure 4 and Table 1 that the overbounding sigmas of both 
scenarios in each axial direction are much larger than the expected values, which 
is especially remarkable for the Neighborhood case. Although there are three con-
ventional checks to reject outliers, there are still a considerable number of faulty 
landmark matching pairs in the final measurement set due to the fact that land-
marks are susceptible to exceedingly large errors and low efficiency of the three 
checks. In addition, the Neighborhood Scenario is subject to a significantly larger 
overbounding sigma than the Carwelding Scenario, which is caused due to many 
mismatch events and large depth error events.

2.4  Preliminary Analysis

In order to further figure out the different behaviors of the overboundings of 
landmark matching errors in two different scenarios, we further explore the dis-
tributions of the landmark matching errors of these two scenarios. We ordered the 
scenarios in descending order according to magnitude ( ) ( ) ( )� � � � �X Y Z2 2 2  
and drew the curves in Figure 5 accordingly. Within each subplot, the horizontal 
axis indexes the ordered measurements while the vertical axis corresponds to the 
log10 (magnitude) of the landmark matching errors in meters.

Since the two scenarios contained a different number of images, their abscissa 
ranges were different. It can be noted that the error range in the Neighborhood 
Scenario spans much wider than that of the Carwelding Scenario. Meanwhile, 
there were a few unusually large residuals in the Neighborhood Scenario.

TABLE 1
Three-Axis Overbounding Standard Deviations of the Landmark Matching Errors

Scenarios ∆  X ∆  Y ∆ Z

Carwelding 0.778 m 0.757 m 0.565 m

Neighborhood 2.03 m 1.92 m 4.77 m

FIGURE 5 The magnitudes of landmark matching errors of the Carwelding Scenario (left) 
and the Neighborhood Scenario (right)
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Suppose we obtained the attributes associated with landmark matching error, 
including:

u v X Y Z u v X Y Z Z Z X Y Zgt gt1 1 1 1 1 2 2 2 2 2 1 2, , , , , , , , , , , , ,, , ∆ ∆ ∆

where u1, v1 represents the feature point in the previous frame; X1, Y1, Z1 represents 
the landmark in the previous frame; u2, v2 represents the feature point in the cur-
rent frame; X2, Y2, Z2 represents the landmark in the current frame; Zgt, 1 represents 
the ground truth depth of landmarks in the previous frame; Zgt, 2 represents the 
ground-truth depth of landmark in the current frame; and ∆ X, ∆Y, ∆ Z represents 
the landmark matching error computed by Equation (13). We find that data with 
large matching errors share certain common characteristics, namely:

•	 large depth estimation errors (i.e., large Z1 - Zgt, 1 and Z2 - Zgt, 2);

•	 large displacement of features/pixels, ( ) ( ) ;u u v v1 2
2

1 2
2� � �  and

•	 large displacement or translation of landmarks, 

( ) ( ) ( ) .X X Y Y Z Z1 2
2

1 2
2

1 2
2� � � � �

These properties are mainly attributed to feature mismatch events, landmark 
movement events, and large depth error events, which are defined as faults in 
Figure 6. They are rarely occurring unknown deterministic errors that cannot be 
modeled by Gaussian white noise (Hafez et al., 2020). Conventional checks fail to 
identify remnant large measurement errors due to these faults across scenarios of 
different natures, leading to a limitation of existing CDF overbounding methods.

3  THE PROPOSED METHOD

We, thus, propose two checks to reject the faults according to their causes shown 
in Figure 6 and insert them into the existing VO workflow in Figure 7.

FIGURE 6 Error characteristics, outlier sources, and their proposed checks
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Specifically, a feature distinctiveness check was inserted into the Feature 
Matching step to address the large displacement of features and a motion con-
straint check was inserted into the Outlier Rejection step to address large depth 
estimation errors and large displacement of landmarks.

3.1  Proposed Check 1: Feature Distinctiveness Check

Proposed Check 1 was added to reject mismatch events in the Feature Matching 
step. Feature Matching is based on descriptors, which are one of the attributes of 
each feature and are usually considered to be a unique identity of the feature. The 
BRIEF descriptor is computed in Equation (14; Calonder et al., 2010):

	 descriptor i
if I x I x
if I x I x

i i

i i

� � � � � � � �
� � � � �

�
�
�

��

1
0

1 2

1 2

,� �
,� �

����i from to0 127 � (14)

where descriptor [i] is the i-th bit of the 128-dimensional descriptor; xi1 and xi2 are 
the pixels around the keypoints x1 and x2, respectively; I(⋅) denotes the intensity 
function; and pixel sets x x x xn11 21 31 1, , , ,� �  and x x x xn12 22 32 2, , , ,� �  follow a 
particular pattern (Calonder et al., 2010).

The features that have similar descriptors are more likely to correspond to the 
same landmark in the real world. Given identical recording procedures and illumi-
nation in the generation process of images, the same landmark in the real world 
should form two features with identical descriptors. However, this is not the case 
in practical applications.

Due to complex distortions, such as specular surfaces, different viewpoints, 
illumination changes, and so on, the descriptors are not exactly the same. 
Therefore, Conventional Check  1 (i.e., the Mismatch Limit Check) is usually 
conducted in the Feature Matching process as a mitigating countermeasure. If 
the difference between two descriptors is below Threshold 1, the correspond-
ing feature points would be considered as a correct match. However, conven-
tional Check 1 tends to fail if two or more features from the same image have 
numerically comparable descriptors. This occasion occurs in the scenarios 
where there are resemblant objects (e.g., cars, grasses, windows) or repetitive 
textures (e.g., walls, roads). Based on the discussion above, there is a high risk 
of mismatch in these cases.

Therefore, we designed Proposed Check 1 to cope with these similar features. 
The main idea is that the tested feature pair will be discarded if it is less distinctive. 

FIGURE 7 Proposed checks in the VO workflow updated from Figure 1
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In a quantitative way, the ratio of optimal distance to suboptimal distance would 
exceed Threshold 4, which means that there is an unselected feature in the current 
frame that is similar to a feature in the previous frame (see Equation (15)).

Threshold 4 is a ratio value from 0 to 1. The closer it gets to zero, the stricter 
Proposed Check 1 is. Optimal distance, thus, refers to the shortest Hamming dis-
tance and suboptimal distance refers to the second shortest Hamming distance. 
Only the feature pair whose ratio is less than or equal to Threshold 4 would be 
preserved. In Equation (15), distance 1 is the optimal distance and distance 2 is the 
suboptimal distance:

	
distance
distance

Threshold
1
2

4≤ � (15)

From the above introduction, we can deduce that Proposed Check  1 works by 
excluding weak feature point pairs. However, when sufficient feature points cannot 
be extracted from the image, setting Threshold 4 too small will lead to fewer matched 
feature pairs, which would affect the accuracy and continuity of VO. Therefore, the 
setting of Threshold 4 is a trade-off between VO integrity, accuracy, and continuity.

Three experiments were designed to quantitatively analyze the effects of 
Threshold 4 on VO continuity, accuracy, and integrity, individually. Over the course 
of the three experiments, Threshold 4 was set to 0.9, 0.7, 0.5, 0.3, and 0.1, respec-
tively, for the five landmark matching pairs required for the RANSAC process in 
the VO algorithm. VO cannot work when the number of landmark matching pairs 
is less than five, which renders an unsolvable frame.

The data input of the three experiments was the P010 Sequence in the Forest 
Winter Scenario, which contained 1,576 frames in total. We chose the P010 
Sequence in the Forest Winter Scenario because it contained the largest number of 
images among all sequences of the scenarios.

In the first experiment, we explored the effect of Threshold 4 on VO continuity. 
Specifically, the Forest Winter P010 Sequence was input into the VO algorithm, 
and we computed the number of landmark matching pairs in each frame under 
different Threshold 4 settings. The statistical result of unsolvable frames is shown 
in Table 2, and the change of the number of landmark matching pairs over frame 
epoch is shown in Figure 8. Note that a value of zero in Figure 8 means that the 
number of landmark matching pairs is no more than four.

It can be seen from Table 2 that the smaller Threshold 4 is, the larger the num-
ber of unsolvable frames will be. When Threshold 4 was set to 0.1, all frames were 
unsolvable. As reflected in Table 2, there was a wide gap between values 0.5 and 
0.3. A similar conclusion can be drawn from Figure 8, where the number of land-
mark matching pairs varied greatly among the different frames. Note that the num-
ber of landmark matching pairs of all frames was zero when Threshold 4 was 0.1. 
Combining Table 2 and Figure 8, we can find that Threshold 4 has a great influ-
ence on VO continuity and that the number of unsolvable frames is sensitive to 
Threshold 4. For the sake of continuity, it is advisable to set Threshold 4 between 
0.5 and 0.9.

TABLE 2
Number of Unsolvable Frames with Different Threshold 4 Values

Threshold 4 0.9 0.7 0.5 0.3 0.1

count 43 116 316 1080 1576
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In the second experiment, we explored the effect of Threshold 4 on VO accuracy. 
To be specific, data was input into the VO algorithm and pose ground truth was 
used to calculate the magnitude of the Lie algebraic error of each frame under 
different Threshold 4 settings according to Equation (16). Then, Absolute Pose 
Error (APE) was calculated according to Equation (17):

	 e T Ti gt i esti i� � �� �
log , ,

1
2

� (16)
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i

N

i�
�
�

1

1

2 � (17)

where N represents the total number of poses; ei represents the pose error in the Lie 
algebraic meaning; Tgt, i represents the ground truth of the transformation matrix; 
Testi,  i  represents the estimated transformation matrix; and log(⋅)∨ represents the 
logarithmic transformation that converts the Lie group into Lie algebra. APE  is 
actually the root-mean-square error of the pose Lie algebra value, which can 
describe the estimated errors of rotation and translation.

Table 3 lists the results of APE. When Threshold 4 was 0.1, VO did not work on all 
frames. So, APE could not be calculated in this case. Figure 9 shows the curve of the 
pose error changing with the frame. The data point with a value of -0.1 indicated 
that VO was not working on that frame and that pose error could not be calculated.

As can be seen from Table 3, with the decrease of Threshold 4, the pose error first 
decreases and then increases. The reason for this is that some landmark matching 
pairs with large residuals were excluded at the beginning, which reduced the error 
of the estimated pose. Then landmark matching pairs with small residuals were 
also excluded, and the reduction in the number of effective measurements led to a 
larger error in the estimated pose.

FIGURE 8 Number of landmark matching pairs per epoch for different settings of 
Threshold 4
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TABLE 3
APE with Different Threshold 4 Values

Threshold 4 0.9 0.7 0.5 0.3 0.1

APE 1.901 1.399 1.381 2.264 N/A

By comparing Figure 8 and Figure 9, it can be seen that the pose error of the frame 
with a large number of landmark matching pairs was relatively small. The same 
trend is shown with different values of Threshold 4. According to the analysis in 
Table 3 and Figure 9, VO accuracy is rather insensitive to Threshold 4. For the sake 
of accuracy, it is appropriate to set the value of Threshold 4 between 0.5 and 0.7.

In the third experiment, we explored the effect of Threshold 4 on VO integrity. 
Specifically, data was input into the VO algorithm and the landmark matching 
error was calculated with pose ground truth. The overbounding sigma with the 
same expected fault probability was calculated.

Figure  10 shows the results of the experiment, noting that the expected fault 
probability was set to 10-3 given the small amount of data points. When Threshold 4 
was set to 0.1, the number of landmark matching pairs in all frames was no more 
than four, which means that VO could not work. Consequently, the result of the 
0.1 setting is not graphically depicted. As can be seen from the figure, the smaller 
Threshold 4 is, the smaller the overbounding sigma will be. In general, the over-
bounding sigma is insensitive to Threshold 4.

Considering these three experiments, setting Threshold 4 between 0.5 and 0.7 
could achieve a good balance between continuity, accuracy, and integrity of VO. 
When Threshold 4 is close to 0.5, Proposed Check 1 is a strong check; however, 
when it takes a value close to 0.7, Proposed Check 1 is a weak check. Scenarios have 
some impact on the setting of Threshold 4. To be specific, when there are rich fea-
tures in the scenario (such as at Factory Day), we recommend using a strong check; 
otherwise in cases like the Office Scenario, using a weak check could be better.

FIGURE 9 Pose error per epoch for different settings of Threshold 4
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3.2  Proposed Check 2: Motion Constraint Check

In practice, there are still a considerable number of faulty landmark matching 
pairs in the landmark pair set after all the three conventional checks. As indicated 
by Section 2.4, most of these are caused by large depth error events. The reasons 
are briefly stated as follows.

In the design of Conventional Check 2, only relatively loose restrictions on dis-
parity and depth are imposed, which could not exclude large depth error events 
efficiently. It is important to note that it is a common phenomenon that the depth 
obtained by the SGBM algorithm is wrong in the real world, especially outdoors. 
Conventional Check 3 eliminates the outliers in probabilistic senses, but there are 
still a considerable number of outliers in the final inlier set due to the large number 
of measurements.

In order to reject these faulty landmark matching pairs on an absolute scale, 
we added Proposed Check 2 just before Conventional Check 3. In view of the fol-
lowing two facts, the motion of successive frames is small. The first fact is that the 
working premise of VO requests overlapping consecutive frames. The second is 
that the motion of the agent (such as cars, drones, handheld devices, and robots) 
should be constrained by dynamics and kinematics in the real world. That is, in a 
very short time of 0.1 s for 10 Hz or 0.03 s for 30 Hz, the displacement of the agent 
should be small. The core idea of Proposed Check 2 is to constrain the movement 
between two successive frames, as shown in Equation (18):

	 P P Thresholdk k� ��1 5 � (18)

where P X Y Zk� � �1 , ,  and P X Y Zk � � �� �, ,  represent the coordinates of an identical 
landmark in the camera coordinate system at epoch k -1  and epoch k, respec-
tively. Note that it was considered that the camera was static, while the landmark 
was kinematic. Therefore, the translation of the camera can be represented by the 

FIGURE 10 Overbounding sigma with different Threshold 4 values
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coordinate differences of the corresponding landmarks. More specifically, when 
the camera experiences the general case of motion, P Pk k- -1  can be expressed as:

	 P P RP t P I P t P P tk k k k k k k� � � � � � �� � � � � � �� � � � � �1 1 1 1 1 1� � � (19)

where R is the rotational matrix; t is the translation vector; � � � �� [ , , ]T  is the 
rotation represented by Euler angles; and × represents the antisymmetric operator.
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Therefore, the left side of Equation (18) is equal to � � ��P tk 1 , and Threshold 5 
is its upper bound. At this point, Threshold 5 constrains the rotation θ  and the 
translation t. It is acceptable that Proposed Check 2 may exclude a few inliers at 
times because there are, overall, a lot of measurements in the context of stereo VO.

Threshold  5 is heavily correlated with pose changes. If the motion of camera 
between two consecutive frames is large (such as a car), then Threshold 5 should 
be set high. If the motion of the camera between two consecutive frames is small 
(such as a pedestrian handheld device), then Threshold 5 should be set low.

In order to quantitatively explore the displacement between consecutive frames 
with different forms of agents, we computed the displacements between two con-
secutive frames using the KITTI data set (Geiger et al., 2012) and the TartanAir 
data set, in which the agent of the former was a car and the agent of the latter was 
an unmanned aerial vehicle. All sequences (11 in total) in the KITTI data set and 
the 10 most representative sequences in the TartanAir data set were selected to 
compute displacement.

First, we analyzed the data sets as follows. Both the KITTI data set and TartanAir 
data set provided ground truth of the camera’s pose. Therefore, we could calculate 
the translation vector between two adjacent frames. Then, we counted the mag-
nitude of the translation vector and the number of occurrences, which were then 
presented using histograms in Figure 11.

Second, the results of the histogram analyses were used as prior information on 
the range within which our target motion resided. From the two data sets that con-
tained the richest variation of scenarios on this topic (i.e., KITTI and TartanAir), 

FIGURE 11 Displacement between adjacent frames with two different agents
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we concluded that if the landmark were to move, it would move between 0 to 
1  meter. Threshold  5, as an upper limit, should thus be chosen as a reasonably 
scaled-up value, which turns our attention to each instance of the five investigated 
values (i.e., 0.6, 0.8, 1.5, 3.0, and 5.0). It can be seen from Figure 11 that the dis-
placement in the KITTI data set were mainly concentrated near 1 meter, while the 
displacement in TartanAir data set were approximately evenly distributed between 
0 and 0.5. In general, there were some differences between the displacement of 
different agents.

In order to further analyze how to select an appropriate value for Threshold 5 
that can provide VO with good integrity without causing serious damage to conti-
nuity and accuracy, we conducted three experiments to quantitatively analyze the 
sensitivity of accuracy, continuity, and integrity of VO to Threshold 5.

In the first experiment, the influence of Threshold 5 on VO continuity was exam-
ined. The Forest Winter P010 Sequence was used as data input for the VO algo-
rithm and the number of landmark matching pairs in each frame under different 
Threshold 5 values was counted. The number of unsolvable frames is shown in 
Table 4, and the curve of the number of landmark matching pairs over frame is 
shown in Figure 12.

From Table 4, it is easy to see that the number of unsolvable frames decreases 
as the value of Threshold 5 increases. When Threshold 5 is greater than 3.0, the 
number of unsolvable frames remains unchanged at 174. A similar conclusion can 
be drawn from Figure 12. Moreover, the number of landmark matching pairs varies 
greatly from frame to frame and they all show the same trend. Combining the data 
from Table 4 with Figure 12, it can be deduced that Threshold 5 has a small impact 
on VO continuity, and the number of unsolvable frames has an overall low sensi-
tivity to the Threshold 5 value. For the sake of VO continuity, it is advisable to set 
Threshold 5 close to 3.0.

TABLE 4
Number of Unsolvable Frames with Different Threshold 5 Values

Threshold 5 0.6 0.8 1.5 3.0 5.0

count 299 221 192 174 174

FIGURE 12 Number of landmark matching pairs per epoch for different settings of 
Threshold 5
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In the second experiment, we examined the influence of the Threshold 5 on VO 
accuracy. We calculated the landmark matching error for each frame in the form 
of Lie algebra magnitude and, then, calculated the APE. The results are shown in 
Table 5 and Figure 13. It can be seen from Table 5 that APE decreases first and, 
then, increases as Threshold 5 values increases. The reason for this trend is that the 
increase of useful measurements enhanced the accuracy of VO. Later, the accuracy 
is actually reduced when faults are mixed in.

By comparing Figure 12 and Figure 13, it can be seen that the pose error of the 
frame with a large number of landmark matching pairs is small. Moreover, the 
pose error under different values of Threshold 5 shows the same trend. Combining 
the data from Table 5 with Figure 13, we can deduce that VO accuracy is overall 
insensitive to Threshold 5. For the sake of accuracy, it is advisable to set the thresh-
old between 0.6 and 1.5.

In the third experiment, we explored the influence of Threshold 5 on VO integrity 
by calculating overbounding sigmas with different values of Threshold 5. Figure 14 
shows the results of the experiment. For the sake of reducing the amount of data 
points, we set the expected fault probability at 10-3. As can be seen from the figure, 
the larger the Threshold 5 value is, the larger the overbounding sigma will be. The 
overbounding sigma is, thus, sensitive to Threshold 5. For the sake of VO integrity, 
it is advisable to set Threshold 5 near 1.5.

Taking into account all three experiments, setting Threshold 5 around 1.5 could 
strike a good balance between continuity, accuracy, and integrity of VO.

It deserves mentioning that Threshold 5 has little to do with the scenario. Rather, 
it is heavily correlated with pose changes of the camera. If the motion of the camera 
between two consecutive frames is large (such as car-mounted equipment), then 
Threshold 5 should be set high; otherwise, if the motion of the camera between two 

TABLE 5
APE With Different Threshold 5 Values

Threshold 5 0.6 0.8 1.5 3.0 5.0

APE 1.145 0.842 1.164 1.645 1.628

FIGURE 13 Pose error per epoch for different settings of Threshold 5
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consecutive frames is smaller (such as with a handheld device), Threshold 5 should 
take on a small value.

4  EXPERIMENTAL VALIDATION

For the newly proposed checks, we first conducted ablation tests to show the 
effects of the individual check. We, then, proceeded to show the combined effects 
of the two proposed checks. Using examples, we also show that CDF overbounding 
greatly improves in terms of tightness, computational efficiency, and most import-
ant of all, scenario tolerance.

4.1  Ablation Study

In order to analyze the contribution of Proposed Check 1 and Proposed Check 2 to 
overbounding landmark matching error, we performed an ablation study on them. 
Specifically, we used the entire set of data sequences included in the Carwelding 
Scenario and Neighborhood Scenario as inputs for the VO pipeline. There were 
four sequences in the Carwelding Scenario and 18 sequences in the Neighborhood 
Scenario. These two scenarios were initially used in Section  2.3 to compare the 
overbounding measurement error of the conventional checks.

We inserted the newly Proposed Check  1 and Proposed Check  2 into the VO 
algorithm, calculated the landmark matching errors, rendered the folded CDFs, 
and obtained the overbounding sigmas. The results are shown in Figure 15 and 
Figure 16, with the expected fault probability set to 10-5. Their corresponding over-
bounding sigmas are summarized in Table 6 and Table 7.

FIGURE 14 Overbounding sigma with different Threshold 5 values
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FIGURE 15 Folded CDFs of landmark matching errors with Proposed Check 1 in x, y, and 
z directions (top to bottom) for the Carwelding Scenario (left) and the Neighborhood Scenario 
(right)
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FIGURE 16 Folded CDFs of landmark matching errors with Proposed Check 2 in x, y, and 
z directions (top to bottom) for the Carwelding Scenario (left) and the Neighborhood Scenario 
(right)
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TABLE 6
Three-Axis Overbounding Standard Deviations of Landmark Matching Errors With Proposed 
Check 1

Scenarios ∆  X ∆  Y ∆ Z

Carwelding 0.531 m 0.640 m 0.550 m

Neighborhood 1.41 m 1.65 m 1.72 m

Figure  15 is the result of adding Proposed Check  1 only and Figure  16 is the 
result of adding Proposed Check 2 only. As can be seen from Figure 15 and Table 6, 
there is still a large gap between the landmark matching errors in the two scenarios 
when only Proposed Check 1 was added.

TABLE 7
Three-Axis Overbounding Standard Deviations of Landmark Matching Errors With Proposed 
Check 2

Scenarios ∆  X ∆  Y ∆ Z

Carwelding 0.406 m 0.455 m 0.348 m

Neighborhood 0.518 m 0.557 m 0.362 m

As shown in Figure 16 and Table 7, the overbounding distributions of landmark 
matching errors in the two scenarios were similar when Proposed Check  2 was 
added.

We also took these two scenarios as data input, executed VO with both of these 
two proposed checks to get the landmark matching errors, and overbounded these 
errors to the same probability of 10-5. The results are shown in Figure  17 and 
Table 8. Consequently, the overbounding sigmas of the two scenarios were similar; 
the difference between overbounding sigmas in these two scenarios had entirely 
disappeared.

TABLE 8
Three-Axis Overbounding Standard Deviations of Landmark Matching Errors With Proposed 
Checks 1 and 2

Scenarios ∆  X ∆  Y ∆ Z

Carwelding 0.469 m 0.499 m 0.367 m

Neighborhood 0.537 m 0.590 m 0.362 m

By comparing Figure  15, Figure  16, and Figure  17, we found that Proposed 
Check 1 contributes to the general model of landmark matching error, but Proposed 
Check 2 is the key to stabilize the landmark matching errors. In order to show this 
point more directly, we compared the overbounding sigmas of VO without the pro-
posed checks, VO with Proposed Check 1, VO with Proposed Check 2, and VO with 
both proposed checks in Figure 18.

The results of VO with the proposed checks turned off and on are given in 
Figure 4 (off) and Figure 17 (on), respectively. By comparing the results of tradi-
tional VO and VO with Proposed Check 1, it can be seen that Proposed Check 1 
reduces the difference of overbounding sigmas between the Carwelding Scenario 
and Neighborhood Scenario, but in a less prominent way than Proposed Check 2 
does. Proposed Check  1 was designed to exist at the Feature Matching step in 
the front-end while Proposed Check 2 is a downstream module that exists in the 
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FIGURE 17 Folded CDFs of landmark matching errors with Proposed Check  1 and 
Proposed Check 2 in x, y, and z directions (top to bottom) for the Carwelding Scenario (left) and 
the Neighborhood Scenario (right)
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back-end. They are, thus, designed to deal with undermining factors of different 
natures: Proposed Check 1 deals with measurement outliers due to feature mis-
matches by resemblant objects or repetitive textures; Proposed Check 2 deals with 
measurement outliers caused by landmark movement or wrong depth estimation, 
which is unknown to the estimator. In this regard, the two proposed checks are 
complementary; neither of them can replace the other.

4.2  Scenario Tolerance Test

To capture the VO sensitivity to operational scenario changes, 10  scenar-
ios were investigated. These scenarios are illustrated in Figure 19, including the 
Carwelding, Factory Day, Factory Night, Forest Autumn, Forest Winter, Hospital, 
Neighborhood, Office, Old Town, and Rainy Day scenarios. The selection of these 
scenarios was based on potential impacting factors.

For example, the comparison between the Factory Day Scenario and Factory 
Night Scenario tested how lighting condition impacts landmark matching errors. 
The comparison between the Forest Autumn Scenario and Forest Winter Scenario 
shows how seasonal variation can influence landmark matching errors. The com-
parison between the Rainy Day Scenario and the Factory Day Scenario illustrates 
how weather affects landmark matching errors.

All the sequences included in these scenarios were processed. Only the hard 
level was considered to capture the worst-case scenario. With the two proposed 
checks inserted into the VO pipeline, the landmark matching error model could be 
better established. In this section, we directly show the final results of the model.

In the case of ARAIM by which future VO integrity concepts will be inspired, 
a fault probability was introduced along with an overbounding standard devia-
tion. For example, the GPS constellation service provider (CSP) commits a 10-5 
fault probability (Department of Defense, 2020), for which the fault was defined 
as a large error whose magnitude exceeded 4 42. σURA  (Walter et  al., 2019). In 
the context of stereo VO, we considered landmark matching pairs with large 
depth error events, feature mismatch events, and landmark movement events as 
faults because they typically cause large landmark matching residuals. Back in 
Figure 17, all the red curves represented the minimal overbounding CDF plots. 

FIGURE 18 Overbounding sigmas of VO with different configurations



    FU et al.

Because a PVO � �10 5 is employed in those figures, these curves were all bounded to 
a 10-5 probability. Then, a minimal bounding standard deviation was established 
for nominal errors within the probability. The same approach can be applied to 
other PVO  values, such as 10-3 or 10-4. Therefore, the landmark errors are bound 
using a paired PVO  and σVO .

With and without the proposed checks, the overbounding standard deviations 
of the landmark matching errors were obtained and are summarized in Figure 20, 
bounded to the 10-5 probability. It can be seen that these two proposed checks make 

FIGURE 19 Investigated operational scenarios for landmark matching error sensitivity 
analysis

FIGURE 20 Overbounding standard deviations of the landmark matching errors for all 
scenarios without proposed checks (a) and with proposed checks (b)
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the overbounding sigma much more scenario tolerant, so it is safe to lump data 
from different scenarios together. Figure 21 shows the folded CDF plots of land-
mark matching errors with a 10-5 fault probability and Table 9 generalizes these 
results by providing more fault probability options. Most importantly, we provided 
recommended overbounding sigma values based on our data processing results. 
Due to the endless challenge scenarios, the recommended values were obtained 
by scaling up the calculated results for more conservative considerations. It should 

TABLE 9
Overbounding Pairs for Landmark Matching Errors With Proposed Checks

Fault Probability Actual / 
Recommended 

σσ x  (m)

Actual / 
Recommended 

σσ y  (m)

Actual / 
Recommended 

σσ z  (m)

10-5 0.462 / 0.6 0.513 / 0.6 0.362 / 0.5

10-4 0.427 / 0.5 0.458 / 0.6 0.362 / 0.5

10-3 0.419 / 0.5 0.419 / 0.5 0.362 / 0.5

FIGURE 21 Folded CDF results of the landmark matching errors with the proposed checks
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be noted that all the error models were derived based on data. We have shown 
that the error overbound is independent of operational scenarios. This is owed to 
the proposed checks, since they help to Gaussianize nominal errors by taming the 
fat-tailed distribution to a normal distribution.

Landmark matching error overbounding (see the second row of Table 9) was also 
validated using two new scenarios that were not involved in the error model devel-
opment in an attempt to test the generalization capabilities of the proposed over-
bounding sigma. These are the Amusement Scenario and End of World Scenario 
in the TartanAir data set. Therefore, the overbound can be proven to be promising 
if the overbounding sigmas of these two scenarios are not greater than the recom-
mended values. These two scenarios were not included in the error model deriva-
tion, so they are suitable for cross-validation. In addition, there are many similar 
features in the environment that may potentially lead to mismatch events. If the 
error models are validated using these two scenarios, the conservatism of the over-
bound are ensured. Figure 22 presents the comparison between the overbounding 
sigmas of the test scenarios and recommended values. The blue bar corresponds 
to the Amusement Scenario and the orange bar corresponds to the End of World 
Scenario. It can be seen that the blue and orange bars are perfectly bounded by the 
model, validating the model in the process.

5  CONCLUSION

Integrity is a greatly under-investigated concept in visual navigation. We pro-
posed a new approach to measurement error detection for the integrity of visual 
navigation and, in particular, stereo visual odometry (VO). As a first step, VO 
measurement residuals were defined as landmark matching error. This definition 
facilitated easy development of future visual navigation integrity concepts based 
on the current advanced receiver autonomous integrity monitoring (ARAIM) 
framework.

FIGURE 22 Comparison between the overbounding sigmas of test scenarios and their 
recommended values



FU et al.    

We, then, proceeded to propose two methods to detect large measurement 
residuals that otherwise could not be identified with the existing outlier rejection 
methods in state-of-the-art VO pipelines. By removing these large errors, measure-
ment residuals were able to be better bounded by the common CDF overbounding 
methods used in ARAIM.

We evaluated our methods using the open-source data set TartanAir and showed 
that a tighter and more computationally effective overbound could be achieved. 
Most important of all, the proposed methods make the traditional overbounding 
method much more scenario tolerant.

These methods and findings are a good starting point for developing future integ-
rity monitoring algorithms for visual navigation and, in particular, stereo VO. Of 
note, because Threshold 5 is heavily correlated with camera pose changes, it could 
be better obtained from an alternative source such as an IMU with proper extrinsic 
parameters (i.e., IMU-camera calibration). In the future, we plan to use this fusion 
framework to develop a fault detection and exclusion (FDE) algorithm and protec-
tion level calculation algorithms.
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